In problems 1-4, Find the number of units x that produces a maximum revenue R.

1. $x = 250$	2. $x = 25$
3. $x = 7$	4. $x = 13$

In problems 5-8, Find the number of unit x that produces the minimum average cost per unit \overline{C}

5. $x = 45$	6. $x = 84$
7. $x = 16$	8. $x = 6$

In problems 9-12, Find the price that will maximize profit for the demand and cost functions, where p is the price, x is the number of units, and C is the cost.

9.	10.
p = 70	p = 53.86
11.	12.
<i>p</i> = 16.68	p = 1.00

In problems 13-14, Use the cost function to find the production level at which the average cost is a minimum.

|--|

In problems 15-16, Find the amount s spent on advertising (in thousands of dollars) that maximizes the profit P. Find the point of diminishing returns.

1 Г	<i>s</i> = 10	s = 13
15.	<i>PODR</i> : (3,71)	^{16.} $PODR: (7,627)$

Find the price elasticity of demand for the demand function at the indicated x-value. Is the demand elastic, inelastic, or of unit elasticity at the indicated x-value? Identify the intervals of elasticity and inelasticity.

17.	18.
$\eta = -2.125$ so $ \eta = 2.125$ so elastic	$\eta = -1$ so $ \eta = 1$ so unit elastic
elastic: x < 63	elastic : $x < 20$
inelastic: $x > 63$	inelastic: x > 20

19.	20.
$\eta = -1.02$ so $ \eta = 1.02$ so unit elastic	$\eta = -1.32$ so $ \eta = 1.32$ so unit elastic
elastic: $(0, \infty)$	elastic: $(0, \infty)$