Implicit Differentiation

In problems 1-6, Find dy/dx.

1. $xy + x = 7$	2. $y^3 = 2 + x^4$
3. $x^2y^3 - 5x = 0$	4. $7y^3 + xy = 6x$
$5. \frac{xy + x^2}{x + 3y} = 2$	$6. \sqrt{xy} = 2$

In problems 7-11, Find the slope of the graph of the function at the given point.

7. $x^2 + y^2 = 9$ (3,0)	8. $y^2 + x^2y = 10$ (3,1)
9. $x^5 - 2xy + y^3 = 5$ (1,2)	10. $8x^3y^2 = 64$ (2,1)
11. $x^2 + y^2 = 16$ (0,-4)	

In problems 12-13, Find the equation(s) of the tangent line at the two given points

12.
$$x^2 - y^2 = 3$$
 (2,1),(-2,-1) 13. $(y+1)^2 = 4(x-3)^2$ (3,5),(-5,1)

14. Given 100,000 units are produced, the Cobb-Douglas production function is given by $100x^{0.55}y^{0.45}=100000$, find the rate of change of y with respect to x when x = 1000 and y = 800.

15. Given a disease is modeled by $y^2 + 1 = 7t^3 + 5t - 2$, find the rate of change of y with respect to t when t = 1 (y is the number of cases and t is time).