1. Solve. 3x + 6 = 33 3x + 6 = 33 3x = 33 - 6 3x = 27 $\frac{3x}{3} = \frac{27}{3}$ x = 9

2. The ordered pair (2, 17) is a solution to which linear equation?

$v = \frac{1}{r} + \frac{1}{r}$	5 + 6x = 17	6 + 6x = y
$y = \frac{17}{17} x + 4$	5+6(2) = 17	6+6(2)=17
$17 = \frac{1}{(2)} + \frac{1}{(2)}$	5 + 12 = 17	6 + 12 = 17
	17 = 17	18 = 17
$17 = \frac{2}{17} + \frac{1}{4}$	yes	по
$17 = \frac{2(4)}{68} + \frac{1(17)}{68}$		
$17 = \frac{8}{68} + \frac{17}{68}$		
$17 = \frac{25}{68}$		
no		

3. Translate into an equation and solve. The sum	4. Which is the graph of $x = -1$?
of seven times a number and seven is seventy-	IE
seven. Find the number.	
7x + 7 = 77	
7x = 77 - 7	
7x = 70	
$\frac{7x}{7} = \frac{70}{7}$	
7 7 7	x =number
x = 10	is a vertical line at that number

5. Factor by grouping:	6. Simplify: $(5x^2 - 9x - 2) + (x^2 - 9x - 4)$
$4x^2 - 12x + 36x - 108$	
$4x^{2} - 12x + 36x - 108$ $4(x^{2} - 3x + 9x - 27)$ 4[x(x - 3) + 9(x - 3)] 4(x - 3)(x + 9)	(5x2 - 9x - 2) + (x2 - 9x - 4) 5x2 - 9x - 2 + x2 - 9x - 4 6x2 - 18x - 6

7. A used tire store is selling minimally-worn tires	8. Which graph shows the points A(-4, 5), B(4, 2),
for \$36 off the new-tire-price of \$60 each. Find	and C(2, -3), on the same axes?
the discount rate on these tires.	
$amt - (amt)(discount_rate) = total$	ン <u> </u>
60 - (60)(r) = 24	::::::::::::::::::::::::::::::::::::::
60 - 60r = 24	····· A •··· ····· ····
60 - 24 = 60r	•••••B
36 = 60r	
$\frac{36}{36} = \frac{60r}{36}$	-10
60 60	
0.6 = r	
r = 60%	

9. Simplify: $-3x^2(5x^3+2y)$	10. Factor: $-4x^4 + 4x^2$
$-3x^{2}(5x^{3}+2y) -15x^{5}-6x^{2}y$	$-4x^4 + 4x^2 -4x^2(x^2 - 1)$
	$-4x^{2}(x+1)(x-1)$

11. Solve. $3x - 5 = x + 4$	12. Find the slope of the line that contains (3, -6)
	and (6, -4)
3x - 5 = x + 4	
3x - x = 4 + 5	$m = \frac{y_2 - y_1}{y_1 - y_1}$
2x = 9	$x_2 - x_1$
2x 9	$m = \frac{(-4) - (-6)}{(2)}$
$\frac{1}{2} - \frac{1}{2}$	(6) - (3)
9	$m = \frac{-4+6}{2}$
$x = \frac{1}{2}$	3
	$m = \frac{2}{2}$
	$m = \frac{1}{3}$

13. Simplify: $\sqrt{72}$	14. Emily has \$167 in her savings account. She withdraws \$112. deposits \$48. and then withdraws
$\sqrt{72}$	\$81. Which shows the ending balance of her account?
$=\sqrt{2\cdot 2\cdot 2\cdot 3\cdot 3}$ $=2\cdot 3\sqrt{2}$	167 - 112 + 48 - 81 = \$22
$=6\sqrt{2}$	

15. Subtract. $-16 - (-14)$	16. Simplify: $\frac{x^2}{x+2} \cdot \frac{x^2 - 5x - 14}{x^2 - 7x}$
-16 - (-14)	
= -16 + 14	x^2 $x^2 - 5x - 14$
= -2	$\overline{x+2}$ $\overline{x^2-7x}$
	$=\frac{x^{2}}{x+2}\cdot\frac{(x-7)(x+2)}{x(x-7)}$
	$x^2 = x(x^2)$
	$=\frac{1}{1}\cdot\frac{x}{x(x-7)}$
	$=\frac{x^2}{1}\cdot\frac{1}{1}$
	1 x
	$=\frac{x}{1}\cdot\frac{1}{1}$
	1 1
	= x

$ \begin{pmatrix} 5 \cdot 6^2 - 5 \cdot 3^2 \end{pmatrix} \div (3+2) = (5 \cdot 36 - 5 \cdot 3^2) \div (3+2) = (180 - 5 \cdot 9) \div (3+2) = (180 - 45) \div (3+2) = 135 \div (3+2) = 135 \div 5 = 27 $ $ (-5y) + 7 + 6x + y - 8x = -5y + 7 + 6x + y - 8x = -2x - 4y + 7 $	

19. Factor completely: $18x^2 - 21x - 60$	20. Solve. $-5x - 10 < -20$
$18x^{2} - 21x - 60$ $3(6x^{2} - 7x - 20)$ $3(6x^{2} - 15x + 8x - 20)$ 3[3x(2x - 5) + 4(2x - 5)] 3(2x - 5)(3x + 4)	-5x - 10 < -20 -5x < -20 + 10 -5x < -10 $\frac{-5x}{-5} > \frac{-10}{-5}$
	x > 2

21. An executive assistant bought some 26 cent stamps and some 33 cent stamps. All together she bought 103 stamps for a total value of \$30.07. How many stamps of each type did she buy?

(.26)(x) + (.33)(103 - x) = 30.07.26x + 33.99 - .33x = 30.07-.07x + 33.99 = 30.07-.07x = 30.07 - 33.99-.07x = -3.92 $\frac{-.07x}{-.07} = \frac{-3.92}{-.07}$ x = 56

so 26 cent stamps: 56 and 33 cent stamps: 47

22. Simplify: $-5[9x-8(6-x)]$ -5[9x-8(6-x)]	23. Simplify: $\frac{-36x^5y^2}{-6x^4y^4}$
= -5[9x - 48 + 8x] = -5[17x - 48] = -85x + 240	$\frac{-36x^5y^2}{-6x^4y^4} = \frac{6x^5y^2}{1x^4y^4}$
	$= \frac{6x^{1}y^{2}}{y^{4}}$ $= \frac{6x}{y^{2}}$

24. Simplify: $\frac{24x^5 + 18x^3 - 18x}{6x^4}$	25. Write an equation for a line, in slope-intercept form, that passes through the point (-5, 2) and has slope 2?
$\frac{24x^5 + 18x^3 - 18x}{6x^4}$	Step 1: find m m = 2
$= \frac{24x^{5}}{6x^{4}} + \frac{18x^{5}}{6x^{4}} - \frac{18x}{6x^{4}}$ $= \frac{4x^{5}}{1x^{4}} + \frac{3x^{3}}{1x^{4}} - \frac{3x}{1x^{4}}$ $= \frac{4x^{1}}{1} + \frac{3}{1x^{1}} - \frac{3}{1x^{3}}$ $= 4x + \frac{3}{x} - \frac{3}{x^{3}}$	Step 2: plug in given point for x, y and m from step 1 into y=mx+b and solve for b y = mx + b 2 = 2(-5) + b 2 = -10 + b 2 + 10 = b 12 = b
	Step 3: Write answer y = mx + b y = 2x + 12