

2. Find the value of each determinant (Similar to p.370 #11-14) $\begin{vmatrix} A & B & C \\ 7 & -1 & 2 \\ 3 & -4 & -5 \end{vmatrix}$ 3. Find (a) $\mathbf{v} \times \mathbf{w}$, (b) $\mathbf{w} \times \mathbf{v}$, (c) $\mathbf{w} \times \mathbf{w}$, and (d) $\mathbf{v} \times \mathbf{v}$ (Similar to p.370 #15-22) v = 3i - 4j + kw = 2i - 3j + 5k

4. Find (a) $\mathbf{v} \times \mathbf{w}$, (b) $\mathbf{w} \times \mathbf{v}$, (c) $\mathbf{w} \times \mathbf{w}$, and (d) $\mathbf{v} \times \mathbf{v}$ (Similar to p.370 #15-22) v = i + j + kw = 5i - 2k 5. Use the given vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} to find each expression. $\mathbf{u} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ $\mathbf{v} = 4\mathbf{i} + \mathbf{j} - 5\mathbf{k}$ $\mathbf{w} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ (Similar to p.370 #23-40)

 $u \times v$

6. Use the given vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} to find each expression. $\mathbf{u} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ $\mathbf{v} = 4\mathbf{i} + \mathbf{j} - 5\mathbf{k}$ $\mathbf{w} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ (Similar to p.370 #23-40)

 $v \times v$

7. Use the given vectors
$$\mathbf{u}$$
, \mathbf{v} , and \mathbf{w} to
find each expression.
 $\mathbf{u} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ $\mathbf{v} = 4\mathbf{i} + \mathbf{j} - 5\mathbf{k}$
 $\mathbf{w} = \mathbf{i} + \mathbf{j} + \mathbf{k}$
(Similar to p.370 #23-40)
 $(-2v) \times u$

8. Use the given vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} to find each expression. $\mathbf{u} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$, $\mathbf{v} = 4\mathbf{i} + \mathbf{j} - 5\mathbf{k}$ $\mathbf{w} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ (Similar to p.370 #23-40)

$$u \cdot (w \times v)$$

9. Use the given vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} to find each expression. $\mathbf{u} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ $\mathbf{v} = 4\mathbf{i} + \mathbf{j} - 5\mathbf{k}$ $\mathbf{w} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ (Similar to p.370 #41-44)

vector orthogonal to both \mathbf{u} and \mathbf{v} (Hint u x v is orthogonal to both)

10. Find the area of the parallelogram with one corner at P₁ and adjacent sides $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_1P_3}$ (Similar to p.370 #45-48)

$$P_1 = (-1,0,3), P_2 = (3,5,-4), P_3 = (4,-1,3)$$

Hint: $||u \times v||$ is the area of the parallelogram where u and v are adjacent sides

11. Find the area of the parallelogram with vertices P_1 , P_2 , P_3 , and P_4 (Similar to p.370 #49-52)

$$P_1 = (4,2,3), P_2 = (4,3,4),$$

 $P_3 = (0,-3,-1), P_4 = (0,-2,0)$

Hint: $||u \times v||$ is the area of the parallelogram where u and v are adjacent sides