

5. The vector v has initial point P and terminal point Q. Write v in the form ai + bj; that is, find its position vector (Similar to p.346 #27-34)

Initial Point : (x_1, y_1) Terminal Point : (x_2, y_2) Position Vector : $\langle x_2 - x_1, y_2 - y_1 \rangle$ 6. Find ||*v*|| (Similar to p.346 #35-40)

v = -2**i** + 4**j**

Given : v = ai + bj $||v|| = \sqrt{a^2 + b^2}$ 7. Find ||v||(Similar to p.346 #35-40) $\mathbf{v} = 4\mathbf{i} + 6\mathbf{j}$ Given : $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$ $||v|| = \sqrt{a^2 + b^2}$

8. Find each quantity if v = 7i - 3jand w = -4i + 6j(Similar to p.346 #41-46)

5**v –** 3**w**

9. Find the unit vector in the same direction as v (Similar to p.346 #47-52) $\mathbf{v} = -5\mathbf{j}$ unit vector $= \frac{\mathbf{v}}{\|\mathbf{v}\|}$

 Find the unit vector in the same direction as v (Similar to p.346 #47-52)

v = -4**i** - **j**

unit vector
$$= \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

11. Write the vector v in the form ai + bj, given its magnitude ||v|| and the angle α it makes with the positive x-axis (Similar to p.347 #57-62) $||v|| = 4, \alpha = 30^{\circ}$

$$v = \|v\|(\cos\alpha i + \sin\alpha j)$$

12. Find the direction angle of v for each vector (Similar to p.347 #63-70)

v = -2**i** + 2**j**

v = ai + bj

direction angle : $\tan \alpha = \frac{b}{c}$

 $0^{\circ} \leq \alpha < 360^{\circ}$

13. Find the direction angle of v for each vector (Similar to p.347 #63-70) v = 3i + -7jv = ai + bjdirection angle : tan $\alpha = \frac{b}{\alpha}$

 $0^{\circ} \le \alpha < 360^{\circ}$